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1 Overview

EM algorithms extend likelihood estimation to cases with hidden states, such
as when observations are corrupted and the true population size is unobserved.
EM algorithms are widely used in engineering and computer science applica-
tions. The reader is referred to (McLachlan and Krishnan, 2008) for general
background on EM algorithms and to (Harvey, 1989) for a discussion of EM
algorithms for time-series data. Coding an EM algorithm is not as involved as
the following 304 pages might suggest. In most texts, the majority of the steps
shown in this technical report would be subsumed under the line “it follows
easily that...”. However, if one has never derived an EM algorithm or update
equations for multivariate normal models, the steps might not be so obvious.
This technical report covers each step in detail so that those who wish to derive
an EM algorithm for extensions to the MARSS model can see the exact steps
and logic required.

The EM algorithm that is presented in textbooks is for the unconstrained
MARSS model where all parameters elements are estimated. In the Mathemati-
cal Biology group at NWFSC, we work mainly with constrained MARSS models
where there are fixed and shared values throughout the parameter matrices. An
example of a shared value would be a shared growth rate term (u) across all
state processes (the random walks) in a MARSS model. In this report, I review
the derivation of the unconstrained EM algorithm and then show the derivation
of the constrained MARSS update equations.

Our linear MARSS model is

z; = Bz;_1 + u+ w;, where w; ~ MVN(0, Q) (1la)
Yy, = Zx; + a+ vi, where v; ~ MVN(0,R) (1b)
xXrq ~ MVN(ﬂ',Vl) (IC)

Our derivation of the EM algorithm for the unconstrained! MARSS model is
based on the derivation by Ghahramani et al.(Ghahramani and Hinton, 1996;
Roweis and Ghahramani, 1999). This EM algorithm was originally derived
by Shumway and Stoffer (1982), but our derivation follows Ghahramani et al’s
slightly different development?. Here, this derivation is extended to the case of a
constrained MARSS model where there may be fixed and shared elements in the
parameter matrices. The algorithm consists of an expectation step ("E step”),
which computes the expected values of the hidden states using the Kalman fil-
ter/smoother, combined with a maximization step ("M step”), which computes
the maximum-likelihood estimates of the parameters given the data and the
expected values of the hidden states.

L«unconstrained” means that each element in the parameter matrix is estimated and no

elements are fixed or shared.

20ne difference is the treatment of the initial condition. The initial condition is &1 in our
derivation not 2g. The result is that our update equations are slightly different than Shumway
and Stoffer’s; although both lead to the same maximum-likelihood parameter estimates.



1.1 The log-likelihood function

Before describing the algorithm, we need to specify the joint log-likelihood of
the data and hidden states for this model®
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yT is shorthand for all the data from time ¢t = 1 to ¢t = T.. n is the number of
data points. The likelihood function comes from the likelihood function for a
multivariate normal distribution since X¢|z;—1 is multivariate normal and Y|z,
is multivariate normal. Here X; denotes the random variable ”hidden states at
time ¢ and x; is a realization from that random variable.

We expand out the terms in the joint log-likelihood to give the rather longer
form:

—(y,) 'R 'a+ (Zz;) "R 'Za; +a ' R 'Zz; + (Zz;) 'R 'a

T
+ aTRla] ) log |R|

T
52 [(:ct)Tlet ~()7Q "Ba,1 — (Bri-1) Q 'z )
2
~u'Q 'z — (z)"Q 'u+ (Bz, 1)'Q "Bz, 1 +u'Q 'Br
+(Bzi1) ' Q lut+u'Q M| — TQ_ 1 log|Ql

1

-3 [(-’171)T(V1)_1$1 — &' (Vi)' — (@) T (V) TEH(©)T(V) e

1
- §1og|V1|— glogQW

This likelihood looks a little different than that in Shumway and Stoffer (2006)
since here, £ = E[z;] not E[zg] and thus the second summation is 2 to T rather
than 1 to T. Note that all bolded elements are column vectors (lower case) and

3This is not the log likelihood output by the Kalman filter and used in model se-
lection. That would be the logL(le\G) equals the marginal or expected log likelihood:
Ex|ylogL(yT,zT|0©).



matrices (upper case). AT is the transpose of matrix A, A™! is the inverse of
A, and |A| is the determinant of A. Parameters are non-italic while elements
that are slanted are realizations of a random variable (z and y are slated)?

2 The EM algorithm

The algorithm cycles iteratively between an expectation step followed by a max-
imization step.

Expectation step, the expected values of the hidden states conditioned all
the data and on a set of parameters at iteration 4, (:)i, are computed using the
Kalman smoother®. The output from the Kalman smoother provides

Xt = EX|y(zt|y’{»éi) (4a)
V, = var(X, |y, 6,) (4b)
Vi1 = cov(Xs, X alyl, 6)) (4c)
From x;, \~/'t, and \7”_1, we can compute (4d)
P, = Exjy(zi(z) |y],0:) = \th + Xe(%e) (4e)
Pt = Exjy(@i(@i—1) [y],60:) = Vieor + %e(Xe1) " (4f)

The subscript on the expectation, E, denotes that the expectation is taken over
the hidden states, X, conditioned on the observed data, y. The right sides of
equations (4e) and (4f) arise from the computational formula for variance and
covariance:

var(X) = E(XX ") — E(X)E(X)
cov(X,Y) = E(XY ") - E(X)E(Y)'.

Maximization step: a new parameter set éz+1 is computed by finding the
parameters that maximize the ezpected log-likelihood function (see section 2.1)
using Xy, Pt and Pt +—1 from iteration i. The equations that give the parameters
for the next iteration (i + 1) are called the update equations and most of this
appendix is devoted to the derivation of the update equations.

After one iteration of the expectation and maximization steps, the cycle is
then repeated. New X;, Pt and P; ;_; are computed using 91+1, and then a new
set of parameters @2+2 is generated. This cycle is continued until the likelihood
no longer increases more than a specified tolerance level. This algorithm is
guaranteed to increase in likelihood at each iteration (if it does not, it means

4In matrix algebra, a capitol bolded letter indicates a matrix. Unfortunately in statistics,
the capitol letter convention is used for random variables. Fortunately, this derivation does
not need to reference random variables except indirectly when using expectations. Thus, I
use capitols to refer to matrices not random variables. The one exception is the reference to
X and in this case a bolded slanted capitol is used.

5The Kalman smoother gives estimates conditioned on y{. It uses the output from the

Kalman filter, which gives y’i 1



there is an error in one’s update equations). The algorithm must be started from
an initial set of parameter values ©;. The algorithm is not particularly sensitive
to the initial conditions but the surface could definitely be multi-modal and have
local maxima. See section 5 on using Monte Carlo initialization to ensure that
the global maximum is found.

2.1 The expected log-likelihood function

The likelihood function that is maximized in the “M” step is the expected log-
likelihood function where the expectation is taken over (X7 |y7), meaning the
set of all possible hidden states conditioned on all the data. We denote the
expected log-likelihood by W. Using the log likelihood equation (3), ¥ is:
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We will reference the expected log-likelihood throughout our derivation of the
update equations; it could be written more concisely, but for deriving the update
equations, we’ll keep in this long form. The new parameters for the maximiza-
tion step are those parameters that maximize the expected log likelihood W.
The equations for these new parameters are termed the update equations.

3 The unconstrained update equations

In this section, we show the derivation of the update equations when all elements
of a parameter matrix are estimated and are all allowed to be different; these
are the update equations one will see in Shumway and Stoffer’s text. If some of



the values are fixed or are shared, the derivations are similar but they get more
cluttered. Section 3 shows the general update equations when there are fixed
or shared values in the parameter matrices. The general update equations are
used in the MARSS R package.

To derive the update equations, we will find the parameters values that
maximize ¥ (equation 5) by partial differentiation of ¥ with respect to the
parameter of interest, and then solve for the parameter value that sets the
partial derivative to zero. The partial differentiation is with respect to each
individual parameter element, for example each u; in the vector u. The idea
is to single out those terms in equation (5) that involve u; (say), differentiate
by uj, set this to zero and solve for u;. This gives the new u; that maximizes
the partial derivative with respect to u; of the expected log-likelihood. Matrix
calculus gives us a way to jointly maximize ¥ with respect to all elements (not
just element j) in a parameter vector or matrix.

Deriving the update equations is tedious. However, understanding exactly
how to do it is critical if one wants to develop extensions of the linear MARSS
model used in our paper. Before commencing, we need some definitions from
matrix derivation. The partial derivative of a scalar (U is a scalar) with respect

to some column vector b (which has elements by, by . . .) is
A or
Ob | 0by  Oby by,

Note that the derivative of a column vector b is a row vector. The partial
derivatives of a scalar with respect to some n X n matrix B is

r ov ov A\
abM (9[)2,1 abn,l
ov ov ov

0¥ | db1o  Obao Obp 2
ob
ov ov ov
LOb1,, Obap Oby |

Note that the indexing is interchanged; 0U/0b; ; = [0¥ /8B]j - For Q and R,
this is unimportant because they are variance-covariance matrices and are sym-
metric. For B and Z, we must be careful because these may not be symmetric.

Table 1 shows matrix differentials that are used in our derivation.

3.1 The update equation for u (unconstrained)

Take the partial derivative of ¥ with respect to u, which is a m x 1 column
vector. All parameters other than u are fixed to constant values (because we
are doing partial derivation). Since the derivative of a constant is 0, terms not



Table 1: Derivatives of a scalar with respect to vectors and matrices. In the following
a and c are n X 1 column vectors, b and d are m x 1 column vectors, D is a n X m
matrix, and C is a n X n matrix. Note, all the numerators in the differentials reduce
to scalars. Both the vectorized and non-vectorized versions are shown; vec is defined

at the bottom of the table.

d(a'c)/0a=0(cTa)/0a=c"

d(a™Db)/0D = (b 'D"a)/dD =ba’
8(a"Db)/dvec(D) = d(b D" a)/d vec(D) = (vec(ba')) "

d(log|C|)/0C = —d(log|C7)/oC = (CT)yt=C~ T
= C ! if C is symmetric

d(log |C|) /0 vec(C) = (vec(C™T)) "

d(b'D'CDd)/dD =db ' D"C+bd'D'C’
d(b ' DTCDd)/dvec(D) = (vec(db'DTC +bd DTCT)) "
If b=d and C is symmetric then the sum reduces to 2bb' D' C

d(a’Ca)/da=09(aC'a’)/da=2aTC

d@a’'C'e)/oC=—-Ctac'C™!

d(a” Ce)/dvee(C) = —(vec(CracTC )

of/0Z = %% the chain rule

vec(Dy,m)

C'= iwverseof C  C™ ' = (C_l)—r = (CT)_l
D' = transpose of D |C| = determinant of C

(6)

(7)

(8)

(9)




involving u will equal 0 and drop out. The subscript, X |y, on the expectation,
E, has been dropped to remove clutter. Taking the derivative to equation (5)
with respect to u:

T

ovjou= 53 ( E[0((@)7 Q" w)/0u] - E[p(u” Q"'w)/0u)
+ E[0((Bzi—1) "' Q 'u)/0u] + E[@(u’ Q 'Ba,_1)/0u] (13)
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Using relations (6) and (10) and using Q' = (Q ™), we have
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The parameters can be pulled out of the expectations® and the —1/2 removed,
giving

T

ov/ou=Y" (El) Q' - El@-1) B'Q" —u'Q™")  (15)

t=2

Set the left side to zero (a 1 x m matrix of zeros) and transpose the whole
equation. Q™! cancels out” by multiplying on the left by Q (left since we just
transposed the whole equation), giving

0:
t

(Elz] - BE[g;—1] —u) = > (E[z] - BE[g;1]) — (T — Du  (16)

T T
=2 t=2

Solving for u and replacing the expectations with the Kalman smoother output,
gives us the new u that maximizes W,
;I

Upew — T_-1 ; (ﬁt - B;(tfl) (17)

SThe expectation is an integral over  and the parameters are not functions of & so they
can be pulled out of the expectations.
7Q is a variance-covariance matrix and is invertable. Q~1Q = I, the identity matrix.



3.2 The update equation for B (unconstrained)

Take the derivative of ¥ with respect to B. Terms not involving B, equal 0 and
drop out.

T
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Using relations (7) and (9), we have
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Pulling the parameters out of the expectations and using Q' = (Q™ )7, we
have

T
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+2 E[ﬁtfl(xtfl)T]BTQ_l + QE[xtluTQ_l])
Set the left side to zero (an m x m matrix of zeros), cancel out Q' by multi-

plying by Q on the right, get rid of the -1/2, and transpose the whole equation
to give

i
B

(Elz¢(zs-1)"] = BE[zs-1(x-1) "] — uE[(z;-1)])
(21)
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The last line replaced the expectations with the Kalman smoother output from
equation (4). Solving for B and noting that P;_; is like a variance-covariance



matrix and is invertable, gives us the new B that maximizes ¥,

Boew = (i(Ptt 1 —u(X1) )(Zpt 1)_1 (22)

t=2

Because all the equations above also apply to block-diagonal matrices, the
derivation immediately generalizes to the case where B is an unconstrained
block diagonal matrix:

(011 bia iz O 0 0 0 0
b271 b2)2 b273 0 0 0 0 0
b371 b3,2 b373 0 0 0 0 0

B_|0 0 0 bia bus 0 0 0 _ ]?)1 ]g 8
0 0 0 bsgy bss O 0O 0O 0 02 B
0 0 0 0 0 bee bsr beg 3
0 0 0 0 0 b776 b7,7 b7,g
L 0 0 0 0 0 b8,6 b877 bg,g_

For the block diagonal B,

Binew = (ZT:(PH 1 —u(X1) ) (Zpt 1) - (23)

t=2

where the subscript ¢ means we take the parts of the matrices that are analogous
to B;; take the whole part within the parentheses not the individual matrices
inside the parentheses) . If B; is comprised of rows a to b and columns ¢ to d of
matrix B, then we take rows a to b and columns ¢ to d of matrices subscripted
by 4 in equation (23).

3.3 The update equation for Q (unconstrained)

The usual way to do this derivation is to use what is known as the “trace trick”
which will pull the Q™" out to the left of the ¢"Q™'b terms which appear in
the likelihood (5). Here I'm showing a less elegant derivation that plods step by
step through each of the likelihood terms. Take the derivative of ¥ with respect
to Q. Terms not involving Q equal 0 and drop out.
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+ E[0((Bz;—1)'Q 'u)/0Q] + E[0(u’' Q 'Bz_1)/0Q]

ot @ w/0q) o Lt msal) 0

10



We use relations (11) and (8) to do the differentiation. Notice that all the terms
in the summation are of the form ¢' Q~'b, and thus we group all the ¢ b inside
one set of parentheses. Also there is a minus that comes from equation (11) and
it cancels out the minus in front of the initial —1/2.

T
oV /0Q = %ZQ* (E[zt(mt)T] — Elz,(Bz;_1)"] — E[Bz_1(z:)"]

~ Blzu'] - Eu(@)"] + BBz, 1(Be;1)"] + E[Bz, 1u’] (25)

T—10-

+ E[u(B:l:t_l)T] + uuT>Q1 -

Pulling the parameters out of the expectations and using (Bz;)" = (z;) B',
we have

ov/0Q = %ZQ_l <E[xt(xt)T] — Efzi(zi-1) /BT — BE[z;_1(z:) ']
t—2

— ElzJu” —uE[(z,)"] + BE[z,_1(z:_1) BT + BE[z;_iJu’ (26)

T-1__
Q1

+uE[(z,_1)"B" + uu—'—>Q_1 -5

We rewrite the partial derivative in terms of the Kalman smoother output:

T
1 i s ~ ~ ~ ~
(9\11/8Q = 5 Z Q 1 <Pt — Pt’tleT — BPtfl_’t — xtuT - U(Xt)T
t=2
+BP,_,B” +Bx,_ju +u(X%._,) B’ (27)

T-1
+uuT>Q_1 _ 5 Q—l

Setting this to zero (a m x m matrix of zeros), we cancel out Q! by multiplying
by Q twice, once on the left and once on the right and get rid of the 1/2.

T
0= Z (Pt — Pt’tleT — BPtht — itu—r - u(;{t)—r

t=2 (28)
+BP, ,B" +B%; ju' +u(X_,) B + uuT) -Q(T -1)
We can then solve for Q, giving us the new Q that maximizes U,
1 &K/~ =~ ~
Qnew = ﬁ Z <Pt — Pt7t_1BT — BPt—l,t — >~<tuT — u(it)T
=2 (29)

+ BistleT + ]3;(t,1u—r + u(it,l)TBT + uuT)

11



This derivation immediately generalizes to the case where Q is a block di-
agonal matrix:

_Q1,1 g2 1,3 O 0 0 0 0
qi2 q22 ¢q23 O 0 0 0 0
@13 G23 q33 O 0 0 0 0
Q- 0 0 0 qa qs O 0 0| %1 (3 8
10 0 0 @5 g5 O 0 0| 0 02 Q
0 0 0 0 0 g6 Qo7 468 3
0 0 0 0 0 g7 aqr7 qrg
Lo 0 0 0 0 wgs grs gss,
In this case,
1 G/~ o~ N
Qinew =77 Z (Pt ~P;; 1 B' -BP,_, —X%u' —uX)"
=2 (30)

—+ Bi_:it,]_BT + E;i,:,]_u—r + 1,1(§75,1>T:BT + uuT>
K3

where the subscript ¢ means we take the matrix (in the big parentheses) that are

analogous to Q;; take the whole part within the parentheses not the individual

matrices inside the parentheses). If Q; is comprised of rows a to b and columns

¢ to d of matrix Q, then we take rows a to b and columns ¢ to d of matrices

subscripted by ¢ in equation (30).

By the way, Q is never really unconstrained since it is a variance-covariance
matrix and the upper and lower triangles are shared. However, because the
shared values are only the symmetric values in the matrix, the derivation still
works even though it’s technically incorrect (Henderson and Searle, 1979). The
constrained update equation for Q explicitly deals with the shared lower and
upper triangles.

3.4 Update equation for a (unconstrained)

Take the derivative of ¥ with respect to a, where a is a n x 1 column vector.
Terms not involving a, equal 0 and drop out.

T

O /9a — —% 3 ( — ((y,) TR 'a)/0a — d(a R"y,)/0a
t=1 (31)
+ E[0((Zx:) "R~ 'a)/da] + E[0(a’ R~ Za;)/0a] + a(aTRla)/8a>
Using relations (6) and (10) and using R™' = (R™) T, we have
T
0v/oa =~ 3" (= )R - (R 7y + Bl(Ze) R
t=1 (32)

+ E[(R™'Zx;) "] + 2aTR_1>
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Pull the parameters out of the expectations, use (ab)’ = b'al and R7! =
(R™1)T where needed, and remove the —1/2 to get

T

0V /0a =" ((yt)TR1 — E[(z,)"]Z" R — aTR1> (33)

t=1

Set the left side to zero (a 1 x n matrix of zeros), take the transpose, and cancel
out R~ by multiplying by R, giving

Anew — % Z (yt - Zit) (35)

If the i-th value of y is missing at time ¢, that would be y; ;, then the i-th value
of a from the previous iteration of the EM algorithm, a; 14, is used in place of
the i-th value of (y, — ZX;) in the summation at time t.

3.5 The update equation for Z (unconstrained)

Take the derivative of W with respect to Z. Terms not involving Z, equal 0 and
drop out.

0V /OZ = (note 9Z is m x n while Z is n x m)

) tz ( ((y,) "R~ Zax,)/0Z)
E[0((Zz,) "R~ 'y,)/0Z]) + E[0((Zz;) ' R~ 'Zx;)/0Z)

+ E[0((Zz;) "R 'a)/0Z] + E[a(aTRlzxt)/aBO

(36)
== Z ( TR Zx,)/0Z)]
— E[a((mt)TZTR y,)/0Z] + E[0((x:) " Z" R Zx,)/OZ]
+ E[0((z;)"Z "R "a)/0Z] + E[a(aTR_1th)/8Z]>
Using relations (7) and (9) and using R~ = (R™)T, we get
1 T
0v /0% =3 3" (- Bley) R - Elei(y) R
t=1 (37)

+ 2Bz (x,)"Z" R + E[z,_,a' R + E[a:taTR_l]>
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Pulling the parameters and y out of the expectations, we have

T
oV /0Z = f% > ( —2E[z,)(y,) "R~ + 2E[z(z,) ]Z' R

t=1

(38)
+ 2E[a:t]aTR_1>

Set the left side to zero (a m x n matrix of zeros), transpose it all, get rid of
the —1/2, and cancel out R™* by multiplying by R on the left, to give

=

0= (4El@)']~ ZE[z:(z:)"] - aE(z:)])
t=1

(39)

(y,(%)" —ZP, —a(X,)")

t=1

Solving for Z and noting that 1325 is invertable, gives us the new Z that maximizes

v,
Lo = (i (.- 2)%)")) (iﬁ) (10)

t=1

If there are missing values in the data, then rewrite equation (40) as follows:

T

Zuo = 3 (P~ 2)%)7) = iH (a1)

t=1

1
where Pi,, = (231 P, and H; denotes Piy, (y, —a)(X;) ". If the i-th value

of y is missing at time ¢, y; ¢, the i-th row of Z from the previous iteration of
the EM algorithm, Zq4, is used in place of the i-th row of H; in the summation
at time ¢.

3.6 The update equation for R (unconstrained)

Take the derivative of ¥ with respect to R. Terms not involving R, equal 0 and
drop out.

0w /oR =~ 3" ((El0((w) TR "y)/OR] - Bl0((y) "R 2 /oR]

— E[0((Zz:) "R 'y,)/OR] — E[0((y,) 'R 'a)/0R]
— E[@(a"R"'y,)/0R] + E[0((Zz,) "R 'Zz,)/0R)] (42)
+ E[0((Zz;) "R 'a)/OR] + E[0(a’' R™'Zz,)/0R]

+ a(aTR—la)/aR) - a(% log [R[)/OR

14



We use relations (11) and (8) to do the differentiation. Notice that all the terms
in the summation are of the form ¢ R™'b, and thus we group all the ¢ b inside
one set of parentheses. Also there is a minus that comes from equation (11) and
cancels out the minus in front of —1/2.

T
o /oR = 5 SR (Eln(u) "] - Ely,(Z) "] - BlZei(y)"

t=1

— Ely,a’] - Ela(y,)"] + E[Zei(Ze,)"] + E[Zz,a"] + Ela(Za,)"] (43)
+ aaT)R1 — ng1

Pulling the parameters and y out of the expectations and using (Zy,)" =
(y,)TZ", we have

OV /OR = % SR (y,g(yt)T ~y,El(@)"]Z2" -~ ZE[z](y,) " —ysa’
t=1

—a(y,)” +ZEz,(z,)"|Z" + ZE[z]a’ +aE[(z,)T)Z" + aaT>R_1 (44)

T
—R!
2

We rewrite the partial derivative in terms of the Kalman smoother output:

T
1 _ ~ ~
0 /oR = 3 SR () 5 2 - Zw) T - wa” —alw)”
= (45)
ZRfl

+ZPZ" +Zxa' +a(x,) Z" + aaT> R — 5

Setting this to zero (a n x n matrix of zeros), we cancel out R~ by multiplying
by R twice, once on the left and once on the right, and get rid of the 1/2.

T
0=Y" <yt<yt>T oy (&)TZT - ZR() —yaT —aly)T
= (46)

+ZP,Z2" +7ZXa' +a(x,) Z" + aaT) - TR
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We can then solve for R, giving us the new R that maximizes ¥,

T

1 - -

Roow = 13 ()7~ 9050727~ Z5000) "~ — ()
t=1

+ Zf’,gZ—r +Zxa’ + a()ﬁit)TZ—r + aaT>
(47)
((yt —7x; — a)(y, — Zx; — a)T +Z(P; — it(iws)—r>z—r>

I
Nl =
[M]=

t=1

I
el
[M]=

((yt —Zx, —a)y, — Zx, —a) | + zx?tzT)

t=1

As with Q, this derivation immediately generalizes to a block diagonal matrix:

R, 0 0
R=|0 Ry 0
0 0 Rj
In this case,
1 <& -
Rinew = 7 O ((yt — 7%, —a)(y, — Z%; —a) | + zvtzT> (48)
T t=1 i

where the subscript ¢ means we take the elements in the matrix in the big
parentheses that are analogous to R;. If R; is comprised of rows a to b and
columns ¢ to d of matrix R, then we take rows a to b and columns ¢ to d of
matrix subscripted by ¢ in equation (48).

Dealing with missing values in the data is straight-forward if R is constrained
to be strictly diagonal (Shumway and Stoffer, 2006). If R is diagonal (not block
diagonal) and the diagonal elements are unequal (or at least not forced to be
shared), then the update equation for R becomes

T

1 ~ ~ -
diag(Ruew) = T Z diag((yt —Z%; —a)(y, — ZX% —a) + ZVtZT>
t=1 (49)

1 I
=7 Zdiag(Jt)
t=1

where diag means “the diagonal of”. If the ¢-th value of y is missing at time ¢,
Y, ¢, then the (i,7) value of R from the previous iteration of the EM algorithm,
R o, is used in place of the ¢-th (4,4) value of matrix J; in the summation.
See Shumway and Stoffer (2006) for a discussion of the R update equations
when R has non-diagonal elements and there are missing values.
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3.7 Update equation for £ (unconstrained)

Take the derivative of ¥ with respect to & . Terms not involving &, equal 0 and
drop out.

1

0w /08 = —2 (= BO((€)" (V1) ™'21)/0€] = B[0((m1)T (V1) 7'€)/0¢]

+O(eT(V1)7l€)/0¢)

Using relations (6) and (10) and using (V)™ = ((V1)™!) ", we have

(50)

oV /o€ = —%( — El@) " (V)] - El@) (V)] +26" (V)T (51)
Pulling the parameters out of the expectations, we get
0w /06 = 5 (~ 2B[(@)) (V1) + 26T (V1)) 2)

We then set the left side to zero, take the transpose, and cancel out —1/2 and
(V1)~! (by noting that it is a variance-covariance matrix and is invertable).

0= ((Vi) 'Efz1] + (V1)7'¢) = (%1 — &) (53)

Thus,
€Ilew = il (54)

4 The constrained update equations

The previous sections dealt with the case where all the elements in a parameter
matrix are estimated. In this section, I deal with the case where some of the
elements are constrained, for example when some elements are fixed values and
some elements are shared (meaning they are forced to have the same value). One
cannot simply use the elements from the unconstrained case for the free elements
because the solution depends on the fixed values; those have to be included in
the solution. One could always go through each matrix element one-by-one, but
that would be very slow since the Kalman smoother would need to be run after
updating each matrix element. Rather one would like to find a simultaneous
solution for all the free elements in our constrained parameter matrix.

Let’s say we have some parameter matrix M (here M could be any of the
parameters in the MARSS model) with fixed, shared and unshared elements:

a 09 ¢
M=|-12 a 0
0 c b

The matrix M can be rewritten in terms of a fixed and free part, where in the
fixed part all free elements are set to zero and in the free part all fixed elements
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are set to zero:

0 09 0 a 0 c
M= |-1.2 0 0| +1|0 a Of = Mfixed + Mfree
0 0 O 0 ¢ b

The vec function turns any matrix into a column vector by stacking the columns
on top of each other. Thus,

a
—1.2
0
0.9
vee(M)=| a
c
c
0
L b .
We can now write vec(M) as a linear combination of f = vec(Mgxeq) and

Dm = vec(Mgee). m is a p X 1 column vector of the p free values, in this case
p = 3 and the free values are a,b,c. D is a design matrix that translates m into
vec(Miee). For example,

a 0 100

—-1.2 —1.2 0 0 O
0 0 0 0 0
0.9 0.9 0 0 0f [a

veeM)=| a [=| 0 [+ |1 0 0| |b|] =f+Dm

c 0 0 0 1] |c
c 0 0 01
0 0 0 0 0

| b . 0 | |0 1 0]

The derivation proceeds by rewriting the likelihood as a function of vec(M),
where M is whatever parameter matrix for which one is deriving the update
equation. Then one rewrites that as a function of m using the relationship
vec(M) = f + Dm. Finally, one finds the m that sets the derivative of ¥ with
respect to m to zero. Conceptually, the algebraic steps in the derivation are
similar to those in the unconstrained derivation. Thus, I will leave out most of
the intermediate steps. The derivations require a few new matrix algebra and
vec relationships shown in Table 2.

4.1 The general u update equations

Since u is already a column vector, it can be rewritten simply as u = f,, + D, v,
where v is the column vector of estimated parameters in u. We then solve
for 0¥ /0v by replacing u with u = £, + D, in the expected log likelihood
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Table 2: Kronecker and vec relations. Here A isn xm, Bism xp, Cisp X q. ais
a m X 1 column vector and b is a p X 1 column vector. The symbol ® stands for the
Kronecker product: A ® C is a np X mq matrix. The identity matrix, I,,, is a n X n
diagonal matrix with ones on the diagonal.

vec(a) = vec(al) =a (55)
The vec of a column vector (or its transpose) is itself.

vec(Aa) = (a’ ®I,)vec(A) = Aa (56)
vec(Aa) = Aa since Aa is itself an m x 1 column vector.
vec(AB) = (I, ® A) vec(B) = (B' ®@1,,) vec(A) (57)
vec(ABC) = (C' ® A) vec(B) (58)
(A®B)(C®D) =(AC®BD) (59)
(a®I,)C=(a®C) (60)
Cla'®I,)=(a' ®C)

(a®IL,)C(b' ®1,)=(ab’ ®C) (61)
(a®a) = vec(aa') (62)

(a'"®a’)=(a®a)’ = (vec(aa))"
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function. In the derivation below, the u subscripts on f and D have been left
off to remove clutter.

T
oW /v = f% > ( — E[0((z:) " Q7 (f + Dv))/dw)

— E[0((f + Dv)TQ 'z,) /0] + E[0((Bzi_1) Q 1(f + Dv))/ov]  (63)

+ E[0((f + Dv) ' Q 'Bx;_1)/0v] + 9((f + Dv) ' Q' (f + Dv))/&v)

The terms involving only f drop out (because they don’t involve v). This gives

T
OV /O = —% Z (— E[0((z;) ' Q 'Dw)/ov] — E[0((Dv) ' Q 'z;)/0v]
t=2
+ E[0((Bz_1) Q 'Dv)/0v] + E[0(Dv)"Q 'Bx,_y) /o] (64)

+0(f' Q7 'Dv) /v + A((Dv) ' Q™ 'f) /v + 8((Dv)TQ_1Dv)/8v>

Using the matrix differentiation relations in Table 1, we get

T

owjov = 23" ( - 2El(z)Q'D] + 2E[(Ba, 1) Q' D)
2

= (65)

+2f'Q'D + 2UTDTQ_1D>

Set the left side to zero and transpose the whole equation. Then we solve for v.

0=>_ (DTQl(E[a:t} ~BE[z; 4] —f) - DTQlDU) (66)
t=2
Thus,
T
(T-1)D'Q 'Dv=D"'Q "> (Elz/] - BE[z;_1] — f) (67)

Thus, the updated v is

T
1 _ -1 _ ~ ~
Vnew = ﬁ(DTQ 1D) DTQ 1 ; (Xt — thfl — f) (68)
and
Upew = fu + Duvnew (69>

If Q is diagonal or the fixed values are all 0, this will reduce just updating the
free elements in u using their values from the unconstrained update equation.
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4.2 The general a update equation

The derivation of the update equation for a with fixed and shared values is
completely analogous to the derivation for u. If a = f, + D,a, where a is a
column vector of the estimated values then

T
Qnew = %(DIR*DQ)“DIR—1 > (- 2% — £ (70)
t=1

The new a parameter is then
Apew = fa + Daanew (71)

Again if R is diagonal or the fixed values are all 0, this will reduce just updating
the free elements in a using their values from the unconstrained update equation.
The modification for missing values follows the unconstrained case. Specifically,
when y; ; is missing, the a;oq value is used for the i-th value of (y, — Zx; —£,)
at time t.

4.3 The general £ update equation

The derivation of the update equation for £ with fixed and shared values is
similar to the derivation for u and a. If £ = f; + D¢p, where p is a column
vector of the estimated values then

Ow/op = ((x1)" (V1) = €7 (V1)"")D (72)
Replace £ with f¢ + D¢p, set the left side to zero and transpose:
0=D"((V1)'%1 — (V1) £, + (V1) "'Dp) (73)
Thus,
Puew = (D¢ (V1) 7'De) "DJ (V1) (%1~ £e) (74)

The new £ is then,
£new = f‘E + D§pnew (75)

4.4 The general B update equation

The matrix B is rewritten as B = Bfixed + Biree, thus vec(B) = £, + D8, where
B is the p x 1 column vector of the p estimated values, f;, = vec(Bfixed) and
DB = vec(Bieo). Take the derivative of U with respect to §; terms in ¥ that
do not involve B also do not involve 8 so they will equal 0 and drop out.

T

ovjop =1 ( — E[0((@)"Q 'Bai_1)/08)
t=2

— E[0((Bai-1)"Q 'x,) /98] + E[0((Bz,—1) Q' (Ba_1))/08)  (76)

T EO(Bz) Q) 98] + E[a<uTQ-1th1>/am)
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This needs to be rewritten as a function of B instead of B. Note that Bx;_; is
a column vector and use relation (56) to show that:

Bz, | = vec(Ba:t_l) =K, vec(B) = Kb(fb + Dbﬂ),

where Kj = ((z;—1)" @ 1) (77)

Thus, 0¥ /08 becomes (the b subscripts are left off K, F and D to remove
clutter):

T

0v/08 =~ > (- Bd((@)TQ 'K(f + DB))/08
~ BO((K(F + DB))TQ "z.) /0] @

+ E[0((K(f + DB))'Q ' (K(f + DB)))/08]
+ E[Q((K(f + DB))'Q 'u)/9B] + E[d(u" Q'K(f + Dﬂ))/&ﬂ)
After a bit of matrix algebra and remembering that d(a'c)/0a = d(c'a)/0a,

equation (6), and that partial derivatives of constants equal 0, the above can be
simplified to

T

0u/0p = - > (- 2El0((e)"Q 'KDB) 98
t=2
+2E[0((Kf)'Q 'KDB)/dB] (79)

T E[9(8" (KD) Q' (KD)B) /98] + 2E[8(uTQ‘1KDﬂ)/8ﬂ}>

Using relations (6) and (10), using Q ' = (Q "), and getting rid of the —1/2,
we have

T
ou/08 =3 (EuxleD] - B[(Kf) QKD
= (80)

+ E[8T(KD)"Q ' (KD)] — E[uTQ_lKD])

The left side can be set to 0 (a 1 X p matrix) and the whole equation transposed,
giving:

0=
t

1 E[(KD)TQ '(KD)}3 - E[(KD)TQ‘1H]>

( E[(KD)TQ 'z, - E[(KD)TQ 'Kf]
= (81)
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Replacing K with ((z;_1)"T ®I), we have

T

0=Y" (E[«(xt_m ©1D)TQ 'z
t=2
— E[(((&;-)" @ D)D) T Q™ ((z4-1)" @ D] (82)
L E[(@-)” ®DD)Q (=) © DB
— E(@e) ® I)D)TQ‘lu])

This looks daunting, but using relation (56) and noting that (A®@B)T = (AT ®
B"), we can simplify equation (82) using the following:
(1) @DQ 'u= (2,1, T)Q 'u

= (2;—1 @ I)vec(Q 'u), because vec(Q 'u)is a column vector

= vec(Q tu(z;_1) "), using relation (56)
Similarly,

((:L‘t,l)—r & I)Q_lmt = VGC(Q_lﬁt(xtfl)T)

Using relation (61):

@1 90L,) ' Q  (mi-1) T @ Ly)f = (T—1(zi—1) T © Q7 F
Similarly,

@19 Q  ((mi—1)" @I)DB = (z—1(x1-1) " ©® QDB
Using these simplifications in equation (82), we get

T

0= Z (E[DT vec(Q 'z (x_1) )] — ED (2 1(xi—1) " ® QN

=2 (83)

—ED (zy_1(z,-1)" ®Q )D|3 - ED" Vec(Q_lu(mtl)T)])

Replacing the expectations with the Kalman smoother output, we arrive at:

T
0= Z (D—r vec(Q_lf’t’tfl) ~-D'(P; ®Q )f
P (84)

-D' (P, ®Q HYDB-D" Vec(Qlu(ﬁt_ﬁT))

Solving for 3,

T _ 1 T _
Brew = (Z D'(Pi 1 ® QI)D) D' < Z (vec(Q™'Py 1)
t=2 =2 (85)

— (B Q- vec(Q‘lu@l)T)))
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This requires that (D' (P;_; ® Q~!)D) is invertable, which it is because it is a
p X p diagonal matrix with only non-zero values on the diagonal.
Combining Bcw With Bgyed, we arrive at the vec of the updated B matrix:

VeC(BneW) = fb + Dbﬂnew (86)

When there are no fixed or shared values, Bgyeq equals zero and Dy, equals an
identity matrix. Equation (85) then reduces to the unconstrained form. To see
this take the vec of the unconstrained update equation for B and notice that
Q! can be then factored out.

4.5 The general Z update equation

The derivation of the update equation for Z with fixed and shared values is
analogous to the derivation for B. The matrix Z is rewritten as Z = Zgyeq +
Zsroc, thus vec(Z) = f, + D.(, where ¢ is the column vector of the p estimated
values, f, = vec(Zfixeq) and D¢ = vec(Zgree)-

T ~ -1 T
Cnew = (Z(D:(Pt ® Rl)Dz)> DI(Z (vec®R 'y, (%) ")
=1 =1 (87)

— (P,@RHf - Vec(Rla(it)T))>

Combining (yew With Zgyeq, we arrive at the vec of the updated Z matrix:

Vec(znew) =f, + Dz(new (88)

4.6 The general Q update equation

A general analytical solution for fixed and shared elements in Q is problematic
since the inverse of Q appears in the likelihood and since Q™! cannot always
be rewritten as a function of vec(Q). It might be an option to use numerical
maximization of 0¥ /0q; ; where ¢; ; is a free element in Q, but this will slow
down the algorithm enormously. However, in a few important special — yet
quite broad — cases, an analytical solution can be derived. The most general of
these special cases is a block-symmetric matrix with optional independent fixed
blocks (subsection 4.6.5). Indeed, all other cases (diagonal, block-diagonal, un-
constrained, equal variance-covariance) except one (a replicated block-diagonal)
are special cases of the blocked matrix with optional independent fixed blocks.
The general update equation is

1
Qnew = T_1 (D;Dq)_lD;— VGC(S)

VGC(Q)HEW = fq + qunew

(89)

where f,, Dy, and ¢q have their standard definitions (section 4). The vec of Q is
written in the form of vec(Q) = f, + D,g, where f, is a m? x 1 column vector
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of the fixed values including zero, D, is the m? x p design matrix, and g is a
column vector of the p free values.

Below I show how the update equation arises by working through a few of
the special cases.

4.6.1 Special case: diagonal Q matrix (with shared or unique pa-
rameters)

Let Q be some diagonal matrix with fixed and shared values. For example,

@ 0 0 0 0
0 4 0 0 O
Q=10 0 ¢ 0 0
0 0 0 f O
0 0 0 0 ¢

Here, f’s are fixed values (constants) and ¢’s are free parameters elements. The
vec of Q! can be written then as vec(Q™!) = £, + Dyg*, where f* is like f,
but with the corresponding i-th non-zero fixed values replaced by 1/f; and ¢*
is a column vector of 1 over the ¢; values. For our example above,

* 1/Q1

7= L/ q2
Take the partial derivative of ¥ with respect to ¢*. We can do this because
Qlis diagonal and thus each element of ¢* is independent of the other elements;

otherwise we would not necessarily be able to vary one element of ¢* while
holding the other elements constant.

oY /oq* = —% Z@(E[(zt)Tlet] — E[(z;)'Q 'Bz;_4]
t=2
— E[(Bz,-1)'Q 2] — E[(z:)"Q 'yl
— Elu’'Q 'z, + E[(Bz;—1)' Q 'Bz;_1] (90)
+ E[(Bz;_1)'Q 'u] + E[u' Q 'Bx; ] + uTQ_1u> /0q*

T-1
2

- 9( log|Q|)/9q*

Using the same vec operations as in the derivations for B and Z, pull Q!
out from the middle and replace the expectations with the Kalman smoother
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output.8

T
oV /og* = — Z ( ® (z:)")] - El((z:)" @ (Bae-1) "))

E[((Bz;- 1) @ (@) )] = Bl((@)" @ (w)")]
~ El(u” @ (@)")] + E[(Bzi—1) " ® (Bzi—1)")]

E[(Bze1)' @ (u)")] + E[(u’ @ Bz,—1) ")+ (u' ® uT)) vec(Q™)/0g*

-1 .
- 9( log |Ql)/9q
1 d T -1 * T—1 -1 *
=5 > 0(vec(8)T) vec(Q™")/0g* +0( log|Q"|)/0g
t=2
T ~ ~ ~
where S = Z (Pt — Pt’tleT — BPtht — itu—r - u()th)T—i—
=2

BP,;B" +BX,_ju' +u(X_1)'B" +uu')
(91)

Note, I have replaced log |Q| with —log |Q*|. The determinant of a diagonal
matrix is the product of its diagonal elements. Thus,

oV /og* = — (; vec(S) " (f* 4+ Dq*)
(92)

5 (1g(f7) + Tog( 7). og(a) + L 1ox(65)-.) ) /00"

where k is the number of times g; appears on the diagonal of Q and [ is the
number of times go appears, etc. Taking the derivatives,

L log(f7) + ..k log(q]) + Hog(a3)...) /0q"

OV /dg* == %DT vee(S) — T;

1 T-1
= iDT vec(S) — TDTDq

(93)

D'Disa p X p matrix with k, [, etc. along the diagonal and thus is invertable;
as usual, p is the number of free elements in Q. Set the left side to zero (a1 x p
matrix of zeros) and solve for g. This gives us the update equation for Q:

1 T -1 T
new — D,D D S
Guew = 77 (DT D,) 7D vee(s) o1

Vec(Q)new = fq + Danew

8 Another, more common, way to do this is to use a “trace trick”, trace(aTAb) =
trace(AbaT), to pull Q! out.
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4.6.2 Special case: Q with one variance and one covariance

a B B B fla,8) gla,B) g(e,B)  gla,B)
Q: ﬁ (6% ﬁ 6 Q-lz g(a7ﬁ) f(avﬁ) g(a7ﬁ) g(a7ﬁ)
g B a f g(a,B) gla,B) fla,B) gl B3)
B B B « g(a,B) gla,B) gla,B) fla,B)

This is a matrix with a single shared variance parameter on the diagonal and a
single shared covariance on the off-diagonals. The derivation is the same as for
the diagonal case, until the step involving the differentiation of log |Q|:

T

Z (vec(S)") vec(Q™H) +

t=2

T

5 loslQ ) o (o5)

oV /dg* = 6( — %
It does not make sense to take the partial derivative of log |Q_1| with respect to
vec(Q_l) because many elements of Q™! are shared so it is not possible to fix
one element while varying another. Instead, we can take the partial derivative of
log |Q!| with respect to g(a, §) which is Z{i,j}@etg dlog |Q'|/0g*; ;. Set g is
those 4, j values where ¢* = g(a, 3). Because g() and f() are different functions
of both a and 3, we can hold one constant while taking the partial derivative
with respect to the other (well, presuming there exists some combination of «
and § that would allow that). But if we have fixed values on the off-diagonal,
this would not be possible. In this case (see below), we cannot hold g() constant
while varying f() because both are only functions of «:

a f f f fla) g(a) gla) g(a)
Q- |l oI [ Q! = g(a) fla) gla) g(@)
f f a f gla) gla) fla) g(a)
ff f a gla) gla) g(a) f(a)

Taking the partial derivative of log |Q*| with respect to ¢* = [g(a 5 ], we
arrive at the same equation as for the diagonal matrix:

oV /og* = %DT vec(S) — %DTDq (96)
where again D' D is a p x p diagonal matrix with the number of times fla, B)
appears in element (1,1) and the number of times g(«, 3) appears in element
(2,2) of D; p = 2 here since there are only 2 free parameters in Q.

Setting to zero and solving for ¢* leads to the exact same update equation
as for the diagonal Q, namely equation (94) in which f, = 0 since there are no
fixed values.

4.6.3 Special case: a block-diagonal matrices with replicated blocks

Because these operations extend directly to block-diagonal matrices, all results
for individual matrix types can be extended to a block-diagonal matrix with
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those types:

B, 0 0
Q=0 By, 0
0 0 B

where B; is any of the allowed matrix types, such as unconstrained, diagonal
(with fixed or shared elements), or equal variance-covariance. Blocks can also
be shared:

B, 0 0
Q=0 By, 0
0 0 B,

but notice the entire block must be identical (By = Bj3); one cannot simply share
individual elements in different blocks. Either all the elements in two (or 3, or
4...) blocks are shared or none are shared.

This is ok:
c d d 0 0 0
d ¢ d 0 0 O
d d c 0 0 0
0 00 ¢ d d
0 00 d ¢ d
0 00 d d ¢
This is not ok:
c d d oo c d d 0 0 0
d ¢ d 0 0 0
d ¢ d 0 0
d d ¢ 0 0 0
d d ¢ 0 0| nor
0 0 0 ¢ e e
0 0 0 ¢ d
000 d e 0 0 0 e ¢ e
0 0 0 e e ¢

The first is bad because the blocks are not identical; they need the same dimen-
sions as well as the same values. The second is bad because again the blocks
are not identical; all values must be the same.

4.6.4 Special case: a symmetric blocked matrix

The same derivation translates immediately to blocked symmetric Q matrices
with the following form:

E, Cio Cigs
Q=|Cio Ey GCop3
Ciz Coz [Es

where the E are as above matrices with one value on the diagonal and another
on the off-diagonals (no zeros!). The C matrices have only one free value or
are all zero. Some C matrices can be zero while are others are non-zero, but a
individual C matrix cannot have a combination of free values and zero values;
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they have to be one or the other. Also the whole matrix must stay block
symmetric. Additionally, there can be shared E or C matrices but the whole
matrix needs to stay block-symmetric. Here are the forms that E and C can
take:

a p B B X X X X 0000
B a B B X X X X 0000
Ei: (Ci: or
g B a B X X X X 0000
B B B «a X X X X 00 0 0
The following are block-symmetric:
El (CLQ 6173 E C C
Cl,g ]E2 Cg,g and C E C
Ciz Cos Es C C E
E, Ci Cyip
and (Cl El (CLQ
Ciz2 Cio E,
The following are NOT block-symmetric:
El (CLQ 0 El 0 (Cl El 0 CLQ
CLQ ]EQ (Cg’g and 0 El CQ and 0 El CLQ
0 Coz Es C C E, Cip Cip E,
U, Cip Cis Dy Cip Ci3
and (CLQ EQ (C273 and (Cl,g Eg C2,3
Ciz Cys Es Ciz Cys Es

In the first row, the matrices have fixed values (zeros) and free values (covari-
ances) on the same off-diagonal row and column. That is not allowed. If there
is a zero on a row or column, all other terms on the off-diagonal row and column
must be also zero. In the second row, the matrix is not block-symmetric since
the upper corner is an unconstrained block (U;) and diagonal block (D;) instead
of a equal variance-covariance matrix (E).

4.6.5 The general case: a block-diagonal matrix with general blocks

In it’s most general form, Q is allowed to have a block-diagonal form where the
blocks, here called G are any of the previous allowed cases. No shared values
across G’s; shared values are allowed within G’s.

G, 0 0
Q=1|0 G, 0
0 0 G

The G’s must be one of the special cases listed above: unconstrained, diag-
onal (with fixed or shared values), equal variance-covariance, block diagonal
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(with shared or unshared blocks), and block-symmetric (with shared or un-
shared blocks). Fixed blocks are allowed, but then the covariances with the free
blocks must be zero:

F 0 0 0
oG 0o o0
Q=10 0 @ o
0 0 0 Gs

Fixed blocks must have only fixed values (zero is a fixed value) but the fixed
values can be different from each other. The free blocks must have only free
values (zero is not a free value).

4.7 The general R update equation

The R update equation for blocked symmetric matrices with optional indepen-
dent fixed blocks is completely analogous to the Q equation. Thus if R has the
form

F 0 0 0
oG 0o o0
R=10 0 G o0
0 0 0 Gs

Again the G’s must be one of the special cases listed above: unconstrained,
diagonal (with fixed or shared values), equal variance-covariance, block diagonal
(with shared or unshared blocks), and block-symmetric (with shared or unshared
blocks). Fixed blocks are allowed, but then the covariances with the free blocks
must be zero

The update equation is

)T

Mq

1
Prew = T(DTTD 1D—r VGC( —7Zx; —a)(y, —Zx; —a

t=1
- (97)
+ zvtzT>

VeC(R)neW =f,. + Drpnew

where D, is the design matrix defined in the same way as D, and f, and p are
column vectors of the fixed and free values defined in the usual way.

The update equation (97) is valid as long as there are no missing values that
fall within free blocks. For example, if y; + is missing, then R;; cannot be in a
free block; it must be in a fixed block (an F block). If there are missing values
that fall in free blocks, then the update equation above will not work unless R
is diagonal. When R is diagonal (strictly diagonal, not block-diagonal) then the
update equation (97) can be used with a missing value modification. If the i-th
value of y is missing at time ¢, that is, element y; ¢, then the (4,7) value of R
from the previous iteration of the EM algorithm, Ry; ;) o14, is used in place of
the t-th (4,4) value in the matrix (y, — ZX; —a)(y, — ZX; —a) ' in the summation
on the last line of equation (97).
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5 Implementation comments

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algo-
rithms it can get stuck on local maxima. There are a number approaches to
doing a pre-search of the initial conditions space, but a brute force random
Monte Carol search appears to work well (Biernacki et al., 2003). It is slow, but
normally sufficient. In our experience, Monte Carlo initial conditions searches
become important as the fraction of missing data in the data set increases.
Certainly an initial conditions search should be done before reporting final esti-
mates for an analysis. However in our? studies on the distributional properties
of parameter estimates, we rarely found it necessary to do an initial conditions
search.

The EM algorithm will quickly home in on parameter estimates that are
close to the maximum, but once the values are close, the EM algorithm can slow
to a crawl. Some researchers start with an EM algorithm to get close to the
maximum-likelihood parameters and then switch to a quasi-Newton method for
the final search. In our ecological applications, parameter estimates that differ
by less than 3 decimal places are for all practical purposes the same. Thus we
have not used the quasi-Newton final search.

Shumway and Stoffer (2006) imply in their discussion of the EM algorithm
that both £ and V; can be simultaneously estimated. Others have noted that the
algorithm bogs down when one attempts this, and this has been our experience.
Harvey (1989) discusses that there are only two allowable cases for the initial
conditions: 1) fixed but unknown and 2) a initial condition set as a prior. In
case 1, £ is then estimated as a parameter and V7 is held fixed at 0. In case
2, neither € nor V; are estimated. Rather they are specified, not estimated, as
part of the model. In the Holmes and Ward (2010) paper, we use case 1.

For case 1, one cannot set V1 = 0 because £ would never be able to leave the
initial value — because you told it not to by setting its variance to zero. So, the
algorithm won’t work. If you try to circumvent this by setting V1 equal to some
small, but not zero, value, the algorithm will work but it will be horribly slow.
The solution, I found, is to set V5 to a large value, e.g. V; = I, where I,, is
the m x m identity matrix. The final maximum-likelihood parameter values are
unaffected by V5. Setting Vi =1, lets the EM algorithm find the maximum-
likelihood € value quickly. Once all the maximum-likelihood parameters are
found via the EM algorithm, the algorithm reruns the Kalman filter!® with the
maximum-likelihood parameters and V; = 0 to obtain the correct likelihood for
case 1.

In some cases, the update equation for one parameter needs other param-
eters. Technically, the Kalman filter/smoother should be run between each
parameter update, however following Ghahramani and Hinton (1996) our al-
gorithm skips this step (unless the user sets control$EMsafe=TRUE) and each
updated parameter is used for subsequent update equations.

9“Our” means work and papers by E. E. Holmes and E.J. Ward.
0Technically, the output from the Kalman filter is used in the ‘innovations form of the
likelihood’ (eqn 4.67 in Shumway and Stoffer, 2006) to compute log L(y{ |©).
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6 MARSS code package

R code for the Kalman filter, Kalman smoother, and EM algorithm is provided
as a separate R package, MARSS. MARSS was developed by Elizabeth Holmes,
Eric Ward and Kellie Wills and provides maximum-likelihood estimation and
model-selection for both unconstrained and constrained MARSS models. The
package contains a detailed manual which gives further information on the algo-
rithms behind the likelihood computations, bootstrapping, confidence intervals,
and model selection criteria.
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